Page Nav

HIDE

Grid

GRID_STYLE

Classic Header

{fbt_classic_header}

Search This Blog

Notes:

latest

Syllabus of Physics NEB Grade 12

  Mechanics 1. Rotational dynamics 1.1  Equation of angular motion, Relation between linear and angular kinematics 1.2  Kinetic energy of ro...

 


Mechanics


1. Rotational dynamics

1.1  Equation of angular motion, Relation between linear and angular kinematics

1.2  Kinetic energy of rotation of rigid body

1.3  Moment of inertia; Radius of gyration

1.4  Moment of inertia of a uniform rod

1.5  Torque and angular acceleration for a rigid body

1.6  Work and power in rotational motion

1.7  Angular momentum, conservation of angular momentum.


2. Periodic motion

2.1  Equation of simple harmonic motion (SHM)

2.2  Energy in SHM

2.3  Application of SHM: vertical oscillation of mass suspended from coiled spring

2.4  Angular SHM, simple pendulum

2.5  Oscillatory motion: Damped oscillation, Forced oscillation and resonance.


3. Fluid statics

3.1 Fluid statics: Pressure in a fluid; Buoyancy

3.2 Surface tension: Theory of surface tension; Surface energy

3.3  Angle of contact, capillarity and its applications

3.4  FluidDynamics:Newton’s formula for viscosity in a liquid; Coefficient of viscosity

3.5  Poiseuille’s formula and its application

3.6  Stokes law and its applications

3.7  Equation of continuity and its applications

3.8  Bernoulli’s equation and its applications.

Heat and Thermodynamics


4. First law of thermodynamics

4.1  Thermodynamic systems

4.2  Work done during volume change

4.3  Heat and work; Internal energy and First law of thermodynamics

4.4  Thermodynamic processes: Adiabatic, isochoric, isothermal and isobaric

4.5  Heat capacities of an ideal gas at constant pressure and volume and relation between them

4.6  Isothermal and Adiabatic processes for an ideal gas.


5. Second law of thermodynamics

5.1  Thermodynamic systems and direction of thermodynamic processes

5.2  Second law of thermodynamics

5.3  Heat engines

5.4  Internal combustion engines: Otto cycle, Diesel cycle; Carnot cycle

5.5  Refrigerator

5.6  Entropy and disorder (introduction only)

Wave and optics


 6. Wave motion

6.1 Progressive waves

6.2 Mathematical description of a wave

6.3 Stationary waves


7. Mechanical waves

7.1  Speed of wave motion; Velocity of sound in solid and liquid

7.2  Velocity of sound in gas

7.3  Laplace’s correction

7.4  Effect of temperature, pressure, humidity on velocity of sound.


8. Wave in pipes and strings

8.1  Stationary waves in closed and open pipes

8.2  Harmonics and overtones in closed and open organ pipes

8.3  End correction in pipes

8.4  Velocity of transverse waves along a stretched string

8.5  Vibration of string and overtones

8.6  Laws of vibration of fixed string.


9. Acoustic phenomena

9.1  Sound waves: Pressure amplitude

9.2  Characteristics of sound: Intensity; loudness, quality and pitch 

9.3  Doppler’s effect.


10. Nature and propagation of light

10.1 Huygen’s principle

10.2 Reflection and Refraction according to wave theory


11. Interference

11.1 Phenomenon of Interferences: Coherent sources

11.2 Young’s double slit experiment.


12. Diffraction

12.1 Diffraction from a single slit

12.2 Diffraction pattern of image; Diffraction grating

12.3 Resolving power of optical instruments.


13. Polarization

13.1 Phenomenon of polarization

13.2 Brewster’s law; transverse nature of light

13.3 Polaroid.

Electricity and Magnetism


 14. Electrical circuits

14.1 Kirchhoff’s law

14.2 Wheatstone bridge circuit; Meter bridge

14.3 Potentiometer: Comparison of e.m.f., measurement of internal resistances of a cell

14.4 Super conductors; Perfect conductors

14.5 Conversion of galvanometer into voltmeter and ammeter; Ohmmeter 

14.6 Joule’s law


15. Thermoelectric effects

15.1 Seebeck effect; Thermocouples 

15.2 Peltier effect: Variation of thermoelectric e.m.f. with temperature; Thermopile


16. Magnetic field

16.1 Magnetic field lines and magnetic flux; Oersted’s experiment

16.2 Force on moving charge; Force on a conductor

16.3 Force and Torque on rectangular coil, Moving coil galvanometer

16.4 Hall effect

16.5 Magnetic field of a moving charge

16.6 Biot and Savart law and its application to (i) a circular coil (ii) a long straight conductor (iii) a long solenoid

16.7 Ampere’s law and its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid

16.8 Force between two parallel conductors carrying current- definition of ampere


17. Magnetic properties of materials

17.1 Magnetic field lines and magnetic flux

17.2 Flux density in magnetic material; Relative permeability; Susceptibility 

17.3 Hysteresis

17.4 Dia,-para- and ferro-magnetic materials


18. Electromagnetic Induction

18.1 Faraday’s laws; Induced electric fields

18.2 Lenz’s law, Motional electromotive force

18.3 A.C. generators; Eddy currents

18.4 Self-inductance and mutual inductance

18.5 Energy stored in an inductor 

18.6 Transformer.


19. Alternating currents

19.1 Peak and rms value of AC current and voltage

19.2 AC through a resistor, a capacitor and an inductor

19.3 Phasor diagram

19.4 Series circuits containing combination of resistance, capacitance and inductance

19.5 Series resonance, quality factor

19.6 Power in AC circuits: power factor

Modern physics


 20. Electrons

20.1 Milikan’s oil drop experiment,

20.2 Motion of electron beam in electric and magnetic fields

20.3 Thomson’s experiment to determine specific charge of electrons


21. Photons

21.1 Quantum nature of radiation

21.2 Einstein’s photoelectric equation; Stopping potential

21.3 Measurement of Plank’s constant


22. Semiconductor devices

22.1 P-N Junction

22.2 Semiconductor diode: Characteristics in forward and reverse bias

22.3 Full wave rectification

22.5 Logic gates; NOT, OR, AND, NAND and NOR.


23. Quantization of energy

23.1 Bohr’s theory of hydrogen atom

23.2 Spectral series; Excitation and ionization potentials

23.3 Energy level; Emission and absorption spectra

23.4 De Broglie Theory; Duality

 23.5 Uncertainly principle

 23.6 X-rays: Nature and production; uses

 23.7 X-rays diffraction, Bragg’s law.


24. Radioactivity and nuclear reaction

24.1 Alpha-particles; Beta-particles, Gamma rays

24.2 Laws of radioactive disintegration

24.3 Half-life, mean-life and decay constant 

24.4 Geiger-Muller Tube 

24.5 Carbon dating

24.6 Medical use of nuclear radiation and possible health hazard.


25. Recent trends in physics

25.1 Surface waves: Rayleigh and Love waves Internal waves: S and P-waves

Wave patterns of Gorkha Earthquake 2015

25.2 Gravitational Wave Nanotechnology Higgs Boson


The End

No comments

If you have any doubts, Please let me know,

Click here to show more posts